3.5.32 \(\int \frac {(a+b \log (c x^n))^2}{x (d+e x^r)^3} \, dx\) [432]

3.5.32.1 Optimal result
3.5.32.2 Mathematica [A] (warning: unable to verify)
3.5.32.3 Rubi [A] (verified)
3.5.32.4 Maple [F]
3.5.32.5 Fricas [B] (verification not implemented)
3.5.32.6 Sympy [F(-1)]
3.5.32.7 Maxima [F]
3.5.32.8 Giac [F]
3.5.32.9 Mupad [F(-1)]

3.5.32.1 Optimal result

Integrand size = 25, antiderivative size = 267 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx=\frac {b e n x^r \left (a+b \log \left (c x^n\right )\right )}{d^3 r^2 \left (d+e x^r\right )}+\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 d r \left (d+e x^r\right )^2}+\frac {\left (a+b \log \left (c x^n\right )\right )^2}{d^2 r \left (d+e x^r\right )}+\frac {3 b n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {d x^{-r}}{e}\right )}{d^3 r^2}-\frac {\left (a+b \log \left (c x^n\right )\right )^2 \log \left (1+\frac {d x^{-r}}{e}\right )}{d^3 r}-\frac {b^2 n^2 \log \left (d+e x^r\right )}{d^3 r^3}-\frac {3 b^2 n^2 \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d^3 r^3}+\frac {2 b n \left (a+b \log \left (c x^n\right )\right ) \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d^3 r^2}+\frac {2 b^2 n^2 \operatorname {PolyLog}\left (3,-\frac {d x^{-r}}{e}\right )}{d^3 r^3} \]

output
b*e*n*x^r*(a+b*ln(c*x^n))/d^3/r^2/(d+e*x^r)+1/2*(a+b*ln(c*x^n))^2/d/r/(d+e 
*x^r)^2+(a+b*ln(c*x^n))^2/d^2/r/(d+e*x^r)+3*b*n*(a+b*ln(c*x^n))*ln(1+d/e/( 
x^r))/d^3/r^2-(a+b*ln(c*x^n))^2*ln(1+d/e/(x^r))/d^3/r-b^2*n^2*ln(d+e*x^r)/ 
d^3/r^3-3*b^2*n^2*polylog(2,-d/e/(x^r))/d^3/r^3+2*b*n*(a+b*ln(c*x^n))*poly 
log(2,-d/e/(x^r))/d^3/r^2+2*b^2*n^2*polylog(3,-d/e/(x^r))/d^3/r^3
 
3.5.32.2 Mathematica [A] (warning: unable to verify)

Time = 0.37 (sec) , antiderivative size = 459, normalized size of antiderivative = 1.72 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx=\frac {\frac {d^2 r^2 \left (a+b \log \left (c x^n\right )\right )^2}{\left (d+e x^r\right )^2}+\frac {2 d r \left (a+b \log \left (c x^n\right )\right ) \left (-b n+a r+b r \log \left (c x^n\right )\right )}{d+e x^r}-2 b^2 n^2 \log \left (d-d x^r\right )+6 a b n r \log \left (d-d x^r\right )-2 a^2 r^2 \log \left (d-d x^r\right )+4 a b r^2 \left (n \log (x)-\log \left (c x^n\right )\right ) \log \left (d-d x^r\right )+6 b^2 n r \left (-n \log (x)+\log \left (c x^n\right )\right ) \log \left (d-d x^r\right )-2 b^2 r^2 \left (-n \log (x)+\log \left (c x^n\right )\right )^2 \log \left (d-d x^r\right )-6 b^2 n^2 \left (\frac {1}{2} r^2 \log ^2(x)+\left (-r \log (x)+\log \left (-\frac {e x^r}{d}\right )\right ) \log \left (d+e x^r\right )+\operatorname {PolyLog}\left (2,1+\frac {e x^r}{d}\right )\right )+4 a b n r \left (\frac {1}{2} r^2 \log ^2(x)+\left (-r \log (x)+\log \left (-\frac {e x^r}{d}\right )\right ) \log \left (d+e x^r\right )+\operatorname {PolyLog}\left (2,1+\frac {e x^r}{d}\right )\right )+4 b^2 n r \left (-n \log (x)+\log \left (c x^n\right )\right ) \left (\frac {1}{2} r^2 \log ^2(x)+\left (-r \log (x)+\log \left (-\frac {e x^r}{d}\right )\right ) \log \left (d+e x^r\right )+\operatorname {PolyLog}\left (2,1+\frac {e x^r}{d}\right )\right )-2 b^2 n^2 \left (r^2 \log ^2(x) \log \left (1+\frac {d x^{-r}}{e}\right )-2 r \log (x) \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )-2 \operatorname {PolyLog}\left (3,-\frac {d x^{-r}}{e}\right )\right )}{2 d^3 r^3} \]

input
Integrate[(a + b*Log[c*x^n])^2/(x*(d + e*x^r)^3),x]
 
output
((d^2*r^2*(a + b*Log[c*x^n])^2)/(d + e*x^r)^2 + (2*d*r*(a + b*Log[c*x^n])* 
(-(b*n) + a*r + b*r*Log[c*x^n]))/(d + e*x^r) - 2*b^2*n^2*Log[d - d*x^r] + 
6*a*b*n*r*Log[d - d*x^r] - 2*a^2*r^2*Log[d - d*x^r] + 4*a*b*r^2*(n*Log[x] 
- Log[c*x^n])*Log[d - d*x^r] + 6*b^2*n*r*(-(n*Log[x]) + Log[c*x^n])*Log[d 
- d*x^r] - 2*b^2*r^2*(-(n*Log[x]) + Log[c*x^n])^2*Log[d - d*x^r] - 6*b^2*n 
^2*((r^2*Log[x]^2)/2 + (-(r*Log[x]) + Log[-((e*x^r)/d)])*Log[d + e*x^r] + 
PolyLog[2, 1 + (e*x^r)/d]) + 4*a*b*n*r*((r^2*Log[x]^2)/2 + (-(r*Log[x]) + 
Log[-((e*x^r)/d)])*Log[d + e*x^r] + PolyLog[2, 1 + (e*x^r)/d]) + 4*b^2*n*r 
*(-(n*Log[x]) + Log[c*x^n])*((r^2*Log[x]^2)/2 + (-(r*Log[x]) + Log[-((e*x^ 
r)/d)])*Log[d + e*x^r] + PolyLog[2, 1 + (e*x^r)/d]) - 2*b^2*n^2*(r^2*Log[x 
]^2*Log[1 + d/(e*x^r)] - 2*r*Log[x]*PolyLog[2, -(d/(e*x^r))] - 2*PolyLog[3 
, -(d/(e*x^r))]))/(2*d^3*r^3)
 
3.5.32.3 Rubi [A] (verified)

Time = 2.10 (sec) , antiderivative size = 364, normalized size of antiderivative = 1.36, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {2791, 2776, 2791, 2773, 792, 2776, 2779, 2821, 2838, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx\)

\(\Big \downarrow \) 2791

\(\displaystyle \frac {\int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (e x^r+d\right )^2}dx}{d}-\frac {e \int \frac {x^{r-1} \left (a+b \log \left (c x^n\right )\right )^2}{\left (e x^r+d\right )^3}dx}{d}\)

\(\Big \downarrow \) 2776

\(\displaystyle \frac {\int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (e x^r+d\right )^2}dx}{d}-\frac {e \left (\frac {b n \int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )^2}dx}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 2791

\(\displaystyle \frac {\frac {\int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (e x^r+d\right )}dx}{d}-\frac {e \int \frac {x^{r-1} \left (a+b \log \left (c x^n\right )\right )^2}{\left (e x^r+d\right )^2}dx}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{d}-\frac {e \int \frac {x^{r-1} \left (a+b \log \left (c x^n\right )\right )}{\left (e x^r+d\right )^2}dx}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 2773

\(\displaystyle \frac {\frac {\int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (e x^r+d\right )}dx}{d}-\frac {e \int \frac {x^{r-1} \left (a+b \log \left (c x^n\right )\right )^2}{\left (e x^r+d\right )^2}dx}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \int \frac {x^{r-1}}{e x^r+d}dx}{d r}\right )}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 792

\(\displaystyle \frac {\frac {\int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (e x^r+d\right )}dx}{d}-\frac {e \int \frac {x^{r-1} \left (a+b \log \left (c x^n\right )\right )^2}{\left (e x^r+d\right )^2}dx}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 2776

\(\displaystyle \frac {\frac {\int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (e x^r+d\right )}dx}{d}-\frac {e \left (\frac {2 b n \int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{e r \left (d+e x^r\right )}\right )}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 2779

\(\displaystyle \frac {\frac {\frac {2 b n \int \frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (\frac {d x^{-r}}{e}+1\right )}{x}dx}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )^2}{d r}}{d}-\frac {e \left (\frac {2 b n \left (\frac {b n \int \frac {\log \left (\frac {d x^{-r}}{e}+1\right )}{x}dx}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{e r \left (d+e x^r\right )}\right )}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\frac {b n \int \frac {\log \left (\frac {d x^{-r}}{e}+1\right )}{x}dx}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 2821

\(\displaystyle \frac {\frac {\frac {2 b n \left (\frac {\operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right ) \left (a+b \log \left (c x^n\right )\right )}{r}-\frac {b n \int \frac {\operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{x}dx}{r}\right )}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )^2}{d r}}{d}-\frac {e \left (\frac {2 b n \left (\frac {b n \int \frac {\log \left (\frac {d x^{-r}}{e}+1\right )}{x}dx}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{e r \left (d+e x^r\right )}\right )}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\frac {b n \int \frac {\log \left (\frac {d x^{-r}}{e}+1\right )}{x}dx}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {\frac {\frac {2 b n \left (\frac {\operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right ) \left (a+b \log \left (c x^n\right )\right )}{r}-\frac {b n \int \frac {\operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{x}dx}{r}\right )}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )^2}{d r}}{d}-\frac {e \left (\frac {2 b n \left (\frac {b n \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d r^2}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{e r \left (d+e x^r\right )}\right )}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\frac {b n \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d r^2}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

\(\Big \downarrow \) 7143

\(\displaystyle \frac {\frac {\frac {2 b n \left (\frac {\operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right ) \left (a+b \log \left (c x^n\right )\right )}{r}+\frac {b n \operatorname {PolyLog}\left (3,-\frac {d x^{-r}}{e}\right )}{r^2}\right )}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )^2}{d r}}{d}-\frac {e \left (\frac {2 b n \left (\frac {b n \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d r^2}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{e r \left (d+e x^r\right )}\right )}{d}}{d}-\frac {e \left (\frac {b n \left (\frac {\frac {b n \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d r^2}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\right )}{e r}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e r \left (d+e x^r\right )^2}\right )}{d}\)

input
Int[(a + b*Log[c*x^n])^2/(x*(d + e*x^r)^3),x]
 
output
-((e*(-1/2*(a + b*Log[c*x^n])^2/(e*r*(d + e*x^r)^2) + (b*n*(-((e*((x^r*(a 
+ b*Log[c*x^n]))/(d*r*(d + e*x^r)) - (b*n*Log[d + e*x^r])/(d*e*r^2)))/d) + 
 (-(((a + b*Log[c*x^n])*Log[1 + d/(e*x^r)])/(d*r)) + (b*n*PolyLog[2, -(d/( 
e*x^r))])/(d*r^2))/d))/(e*r)))/d) + (-((e*(-((a + b*Log[c*x^n])^2/(e*r*(d 
+ e*x^r))) + (2*b*n*(-(((a + b*Log[c*x^n])*Log[1 + d/(e*x^r)])/(d*r)) + (b 
*n*PolyLog[2, -(d/(e*x^r))])/(d*r^2)))/(e*r)))/d) + (-(((a + b*Log[c*x^n]) 
^2*Log[1 + d/(e*x^r)])/(d*r)) + (2*b*n*(((a + b*Log[c*x^n])*PolyLog[2, -(d 
/(e*x^r))])/r + (b*n*PolyLog[3, -(d/(e*x^r))])/r^2))/(d*r))/d)/d
 

3.5.32.3.1 Defintions of rubi rules used

rule 792
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveConten 
t[a + b*x^n, x]]/(b*n), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1]
 

rule 2773
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_)^(r_.))^(q_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^r)^(q + 1)*((a + 
 b*Log[c*x^n])/(d*f*(m + 1))), x] - Simp[b*(n/(d*(m + 1)))   Int[(f*x)^m*(d 
 + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && Eq 
Q[m + r*(q + 1) + 1, 0] && NeQ[m, -1]
 

rule 2776
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + 
(e_.)*(x_)^(r_))^(q_.), x_Symbol] :> Simp[f^m*(d + e*x^r)^(q + 1)*((a + b*L 
og[c*x^n])^p/(e*r*(q + 1))), x] - Simp[b*f^m*n*(p/(e*r*(q + 1)))   Int[(d + 
 e*x^r)^(q + 1)*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[{a, b, c, d 
, e, f, m, n, q, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || G 
tQ[f, 0]) && NeQ[r, n] && NeQ[q, -1]
 

rule 2779
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r 
_.))), x_Symbol] :> Simp[(-Log[1 + d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)) 
, x] + Simp[b*n*(p/(d*r))   Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^(p - 
 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]
 

rule 2791
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^ 
(q_))/(x_), x_Symbol] :> Simp[1/d   Int[(d + e*x^r)^(q + 1)*((a + b*Log[c*x 
^n])^p/x), x], x] - Simp[e/d   Int[x^(r - 1)*(d + e*x^r)^q*(a + b*Log[c*x^n 
])^p, x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] && ILtQ[q, -1 
]
 

rule 2821
Int[(Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b 
_.))^(p_.))/(x_), x_Symbol] :> Simp[(-PolyLog[2, (-d)*f*x^m])*((a + b*Log[c 
*x^n])^p/m), x] + Simp[b*n*(p/m)   Int[PolyLog[2, (-d)*f*x^m]*((a + b*Log[c 
*x^n])^(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 
0] && EqQ[d*e, 1]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 
3.5.32.4 Maple [F]

\[\int \frac {{\left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{x \left (d +e \,x^{r}\right )^{3}}d x\]

input
int((a+b*ln(c*x^n))^2/x/(d+e*x^r)^3,x)
 
output
int((a+b*ln(c*x^n))^2/x/(d+e*x^r)^3,x)
 
3.5.32.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1165 vs. \(2 (263) = 526\).

Time = 0.28 (sec) , antiderivative size = 1165, normalized size of antiderivative = 4.36 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx=\text {Too large to display} \]

input
integrate((a+b*log(c*x^n))^2/x/(d+e*x^r)^3,x, algorithm="fricas")
 
output
1/6*(2*b^2*d^2*n^2*r^3*log(x)^3 + 9*b^2*d^2*r^2*log(c)^2 - 6*a*b*d^2*n*r + 
 9*a^2*d^2*r^2 + 6*(b^2*d^2*n*r^3*log(c) + a*b*d^2*n*r^3)*log(x)^2 + (2*b^ 
2*e^2*n^2*r^3*log(x)^3 + 3*(2*b^2*e^2*n*r^3*log(c) - 3*b^2*e^2*n^2*r^2 + 2 
*a*b*e^2*n*r^3)*log(x)^2 + 6*(b^2*e^2*r^3*log(c)^2 + b^2*e^2*n^2*r - 3*a*b 
*e^2*n*r^2 + a^2*e^2*r^3 - (3*b^2*e^2*n*r^2 - 2*a*b*e^2*r^3)*log(c))*log(x 
))*x^(2*r) + 2*(2*b^2*d*e*n^2*r^3*log(x)^3 + 3*b^2*d*e*r^2*log(c)^2 - 3*a* 
b*d*e*n*r + 3*a^2*d*e*r^2 + 6*(b^2*d*e*n*r^3*log(c) - b^2*d*e*n^2*r^2 + a* 
b*d*e*n*r^3)*log(x)^2 - 3*(b^2*d*e*n*r - 2*a*b*d*e*r^2)*log(c) + 3*(2*b^2* 
d*e*r^3*log(c)^2 + b^2*d*e*n^2*r - 4*a*b*d*e*n*r^2 + 2*a^2*d*e*r^3 - 4*(b^ 
2*d*e*n*r^2 - a*b*d*e*r^3)*log(c))*log(x))*x^r - 6*(2*b^2*d^2*n^2*r*log(x) 
 + 2*b^2*d^2*n*r*log(c) - 3*b^2*d^2*n^2 + 2*a*b*d^2*n*r + (2*b^2*e^2*n^2*r 
*log(x) + 2*b^2*e^2*n*r*log(c) - 3*b^2*e^2*n^2 + 2*a*b*e^2*n*r)*x^(2*r) + 
2*(2*b^2*d*e*n^2*r*log(x) + 2*b^2*d*e*n*r*log(c) - 3*b^2*d*e*n^2 + 2*a*b*d 
*e*n*r)*x^r)*dilog(-(e*x^r + d)/d + 1) - 6*(b^2*d^2*r^2*log(c)^2 + b^2*d^2 
*n^2 - 3*a*b*d^2*n*r + a^2*d^2*r^2 + (b^2*e^2*r^2*log(c)^2 + b^2*e^2*n^2 - 
 3*a*b*e^2*n*r + a^2*e^2*r^2 - (3*b^2*e^2*n*r - 2*a*b*e^2*r^2)*log(c))*x^( 
2*r) + 2*(b^2*d*e*r^2*log(c)^2 + b^2*d*e*n^2 - 3*a*b*d*e*n*r + a^2*d*e*r^2 
 - (3*b^2*d*e*n*r - 2*a*b*d*e*r^2)*log(c))*x^r - (3*b^2*d^2*n*r - 2*a*b*d^ 
2*r^2)*log(c))*log(e*x^r + d) - 6*(b^2*d^2*n*r - 3*a*b*d^2*r^2)*log(c) + 6 
*(b^2*d^2*r^3*log(c)^2 + 2*a*b*d^2*r^3*log(c) + a^2*d^2*r^3)*log(x) - 6...
 
3.5.32.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx=\text {Timed out} \]

input
integrate((a+b*ln(c*x**n))**2/x/(d+e*x**r)**3,x)
 
output
Timed out
 
3.5.32.7 Maxima [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x^{r} + d\right )}^{3} x} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/x/(d+e*x^r)^3,x, algorithm="maxima")
 
output
1/2*a^2*((2*e*x^r + 3*d)/(d^2*e^2*r*x^(2*r) + 2*d^3*e*r*x^r + d^4*r) + 2*l 
og(x)/d^3 - 2*log((e*x^r + d)/e)/(d^3*r)) + integrate((b^2*log(c)^2 + b^2* 
log(x^n)^2 + 2*a*b*log(c) + 2*(b^2*log(c) + a*b)*log(x^n))/(e^3*x*x^(3*r) 
+ 3*d*e^2*x*x^(2*r) + 3*d^2*e*x*x^r + d^3*x), x)
 
3.5.32.8 Giac [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x^{r} + d\right )}^{3} x} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/x/(d+e*x^r)^3,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)^2/((e*x^r + d)^3*x), x)
 
3.5.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{x \left (d+e x^r\right )^3} \, dx=\int \frac {{\left (a+b\,\ln \left (c\,x^n\right )\right )}^2}{x\,{\left (d+e\,x^r\right )}^3} \,d x \]

input
int((a + b*log(c*x^n))^2/(x*(d + e*x^r)^3),x)
 
output
int((a + b*log(c*x^n))^2/(x*(d + e*x^r)^3), x)